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Conservative interpolation (remapping) is
one of the essentialparts of most Arbitrary
Lagrangian-Eulerian(ALE) methods. It recom-
putesthe conservative quantities(suchas mass,
momenta,or energy) from the Lagrangiancom-
putationalmeshto theimprovedone.In thisshort
reportweextendtheideaof thesweptintegration
introducedin [1] to the mesheswith changing
connectivity. We focus to the Voronoi meshes
in 2D. One numericalexample is presentedto
show, thatpropertiesof this algorithm(conserva-
tivity, linearity andboundpreservation) remains
unchangedfor mesheswith differenttopology.

Theremappingproblemis following – wehave
two differentmeshes(original andnew) andthe
unknown underlyingfunction. We do not know
thefunction itself, only meanvaluesin theorigi-
nal cellsareknown. In [2], we extendideaof [1]
to acompletethree-stepalgorithm:1) reconstruc-
tion – recoverstheunknown function in a piece-
wise linear form; 2) integration – integratesthe
reconstructedfunctionin thenew cellsto getnew
meanvalues;and3) repair– ensureslocal-bound
preservationby localmassredistribution.

In the reconstructionstage,the slopesin each
cell arecomputedusingcertainmethod,with or
without limiters. The only condition is to pre-
serve a global linear function. In practicaltests,
it is convenientto usethe monotonicitypreserv-
ing Barth-Jespersenlimiter [3] radicallyreducing
thenumberof possiblelocal-boundviolations.

During the integrationstagenew meanvalues
arecomputed.The mostnaturalapproachis the
exactintegrationovertheoverlappingareasof the
original andthenew meshes.Unfortunately, this

processis quite inef�cient and makes the com-
pletealgorithmvery slow. We usethe approxi-
mateintegrationmethodbasedon the sweptre-
gion idea– themassin thenew cell canbecom-
putedfrom the massof the correspondingorigi-
nal cell just by addingor subtractingmassesof
all sweptregions.By sweptregionswe meanthe
areasde�ned by thesmoothmovementof all cell
edgesto their new positions. For this algorithm
no intersectionsareneeded,moreover it is edge-
basedandsomuchmoreef�cient thantheprevi-
ousmethod.

Unfortunately, our approximate integration
doesnotguaranteesatisfactionof thelocal-bound
preservation condition, so the third stage– re-
pair – is needed.It locatestheproblematicareas,
wherethe boundsare violated, and correctsthe
valuebackto the local extreme. Dueto thecon-
servativity demand,it takesthe massneededfor
repairfrom(oraddsadditionalmassto) theneigh-
boring cells proportionallyto the masses,which
cansafelybetaken(added)from theseneighbors
without violating their localbounds.

This completealgorithm is ef�cient, linearity
and local-boundpreserving,stable,andapplica-
ble to generalunstructuredmeshesbothin 2D [2]
and3D [4] with the sametopology. Therealso
is a question,what to do, if the meshtopology
changesduringtherezoningprocess.Typical ex-
ampleof reconnectionisdisplayedin the�rst Fig-
ure (a). Four cells of the original meshchanged
their topology, oneof originaledgeswasremoved
andanew oneadded,makingneighborstwo new
cellswhichhave notbeenneighborsbefore.

Let us note, that such topology changedoes
not affect the reconstructionand repair process,
only theintegrationstagehasto bemodi�ed. Our
approachis to split the swept integration stage
into two steps. We computethe “center of re-
connection”– eitherintersectionof removedand
creatededgesor averageof their vertices.Then,
we shrink the removed edgeto this centralpoint
and perform swept integration of all � ve edges
involved (the removed edgeandfour edgescon-
nectedto its vertices)– see�rst Figure (b). In
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(a) (b) (c)

Onereconnectionin 2D mesh(a). Solvingin two
steps: shrinking old edges to one point (b) and
expandingit to thenew edges(c).

the secondstep,we expandthe centralpoint to
the creatededgeandperformsimilar � ve swept
integrations. The situationat the boundaryand
thecomputationof thecell neighborhoodfor ex-
tremacomputationmustbe treatedcarefully, for
the completealgorithm to satisfy all the condi-
tionsstatedin thepreviousparagraph.

To demonstrateits properties,we presenthere
thecyclic remappingof the“color function” with
value 1 inside a circle in the computationaldo-
main center, and0 outside(secondFigure). The

(a) (b) (c)

Discontinuous“color function” remappedovera
seriesof sine-movingVoronoigrids. Initial values
(a), valueson themiddlemesh(b), andvalueson
the�nal mesh(c).

initial Voronoimesh(a)hasregularlyplacedgen-
erators,andthen-th mesh(in timetn = n=nmax) is
obtainedfrom generatorsplacedby formulas

xn
k = x0

k + a(tn) sin(2px0
k) sin(2py0

k) ,

yn
k = y0

k + a(tn) sin(2px0
k) sin(2py0

k) ,

a(t) =
�

t=5 for t � 1=2
(1� t)=5 for t > 1=2.

Duringthegenerator'smovement,thegrid moves
andchangesit' s connectivity up to themiddleof
thesimulation(b), thenit returnsbackto theorig-
inal one(c).

Theperformedsimulationsandtheirnumerical
errorsprove thealgorithm's convergenceandsat-
isfactionof all requiredpropertiesfor thequality
remappingalgorithm.
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